contestada

Consider a semicircular ring of radius R. Its linear mass density varies as lambda =lambda not sin theta. Locate its centre of mass​

Consider a semicircular ring of radius R Its linear mass density varies as lambda lambda not sin theta Locate its centre of mass class=

Respuesta :

Answer:

(0, πR/4)

Explanation:

The linear mass density (mass per length) is λ = λ₀ sin θ.

A short segment of arc length is ds = R dθ.

The mass of this short length is:

dm = λ ds

dm = (λ₀ sin θ) (R dθ)

dm = R λ₀ sin θ dθ

The x coordinate of the center of mass is:

X = ∫ x dm / ∫ dm

X = ∫₀ᵖ (R cos θ) (R λ₀ sin θ dθ) / ∫₀ᵖ R λ₀ sin θ dθ

X = R ∫₀ᵖ sin θ cos θ dθ / ∫₀ᵖ sin θ dθ

X = R ∫₀ᵖ ½ sin 2θ dθ / ∫₀ᵖ sin θ dθ

X = ¼R ∫₀ᵖ 2 sin 2θ dθ / ∫₀ᵖ sin θ dθ

X = ¼R (-cos 2θ)|₀ᵖ / (-cos θ)|₀ᵖ

X = ¼R (-cos 2π − (-cos 0)) / (-cos π − (-cos 0))

X = ¼R (-1 + 1) / (1 + 1)

X = 0

The y coordinate of the center of mass is:

Y = ∫ y dm / ∫ dm

Y = ∫₀ᵖ (R sin θ) (R λ₀ sin θ dθ) / ∫₀ᵖ R λ₀ sin θ dθ

Y = R ∫₀ᵖ sin² θ dθ / ∫₀ᵖ sin θ dθ

Y = R ∫₀ᵖ ½ (1 − cos 2θ) dθ / ∫₀ᵖ sin θ dθ

Y = ½R ∫₀ᵖ (1 − cos 2θ) dθ / ∫₀ᵖ sin θ dθ

Y = ½R (θ − ½ sin 2θ)|₀ᵖ / (-cos θ)|₀ᵖ

Y = ½R [(π − ½ sin 2π) − (0 − ½ sin 0)] / (-cos π − (-cos 0))

Y = ½R (π − 0) / (1 + 1)

Y = ¼πR