A reaction A(aq)+B(aq)↽−−⇀C(aq) has a standard free‑energy change of −4.20 kJ/mol at 25 °C. What are the concentrations of A, B, and C at equilibrium if, at the beginning of the reaction, their concentrations are 0.30 M, 0.40 M, and 0 M, respectively?

Respuesta :

Answer : The concentration of [tex]A,B\text{ and }C[/tex] at equilibrium are 0.132 M, 0.232 M  and 0.168 M  respectively.

Explanation :

The given chemical reaction is,

[tex]A(aq)+B(aq)\rightleftharpoons C(aq)[/tex]

First we have to calculate the equilibrium constant for the reaction.

The relation between the equilibrium constant and standard free‑energy is:

[tex]\Delta G^o=-RT \ln k[/tex]

where,

[tex]\Delta G^o[/tex] = standard free‑energy change = -4.20 kJ/mole

R = universal gas constant = 8.314 J/mole.K

k = equilibrium constant = ?

T = temperature = [tex]25^oC=273+25=298K[/tex]

Now put all the given values in the above relation, we get:

[tex]-4.20kJ/mole=-(8.314J/mole.K)\times (298K) \ln k[/tex]

[tex]k=5.45[/tex]

Now we have to calculate the concentrations of A, B, and C at equilibrium.

The given equilibrium reaction is,

                          [tex]A(aq)+B(aq)\rightleftharpoons C(aq)[/tex]

Initially               0.30      0.40         0  

At equilibrium  (0.30-x) (0.40-x)     x

The expression of equilibrium constant will be,

[tex]k=\frac{[C]}{[A][B]}[/tex]

[tex]5.45=\frac{x}{(0.30-x)\times (0.40-x)}[/tex]

By solving the term x, we get

[tex]x=0.168\text{ and }0.716[/tex]

From the values of 'x' we conclude that, x = 0.716 can not more than initial concentration. So, the value of 'x' which is equal to 0.716 is not consider.

The value of x will be, 0.168 M

The concentration of [tex]A[/tex] at equilibrium = (0.30-x) = 0.30 - 0.168 = 0.132 M

The concentration of [tex]B[/tex] at equilibrium = (0.40-x) = 0.40 - 0.168 = 0.232 M

The concentration of [tex]C[/tex] at equilibrium = x = 0.168 M

The equilibrium concentrations of A, B and C are;  0.2 M,  0.30 M, 0.1 M.

Given that;

ΔG = -RTlnK

ΔG = change in free energy = −4.20 kJ/mol or 4.20 × 10^3J/mol

R = molar gas constant = 8.314 J/K/mol

T = absolute temperature =  25 °C + 273 = 298 K

K = equilibrium constant = ??

K = ΔG/ -RT

Substituting values;

K =  −(4.20 × 10^3J/mol)/ -(8.314 J/K/mol ×  298 K)

K = 1.695

Now we must set up an ICE table as follows;

        A(aq)         +         B(aq)       ⇄    C(aq)

I        0.30                      0.40               0

C        -x                          -x                  +x

E       0.30 - x               0.40 - x           +x

K = [C]/[A] [B]

1.695 = [x]/[ 0.30 - x] [0.40 - x]

1.695 [ 0.30 - x] [0.40 - x] =  [x]

We now have the quadratic equation;

0.23 - 2.187x + 1.695x^2 = 0

x = 1.2 or 0.1

Since x can not exceed the initial concentration of reactants, hence, x = 0.1

[C] = 0.1 M

[B] =  0.40 M -  0.1 M = 0.30 M

[A] = 0.30 M -  0.1 M = 0.2 M

Learn more: https://brainly.com/question/946875