An electron is confined to a region of space the sixe of an atom (0.1 nm). In the first excited state, what is the probability of finding the electron between x = 0 and x = 0.25 x 10^-10 m?

Respuesta :

Answer:

P(0<x< [tex]0.025\times 10^{- 10}m[/tex]) = 0.25

Given:

l = d = 0.1 nm [tex]0.1\times 10^{- 9} m[/tex]

Solution:

The wave function for the confined electron in the range 0<x<[tex]0.25\times 10^{- 10} m[/tex] is given by:

[tex]\Psi (x) = \sqrt{\frac{2}{d}}sin(\frac{2\pi x}{d})[/tex]

Now, the probability to find the electron in the range 0<x<[tex]0.25\times 10^{- 10} m[/tex] is given by:

P(x) = [tex]\int_{0}^{l}|\Psi(x)|^{2} dx[/tex]

P(x) = [tex]\frac{2}{d}\int_{0}^{0.25\times 10^{- 10}}sin^{2}(\frac{2\pi x}{d}) dx[/tex]

P(x) = [tex]\frac{2}{0.1\times 10^{- 9}}\int_{0}^{0.25\times 10^{- 10}}sin^{2}(\frac{2\pi x}{d}) dx[/tex]

P(x) = [tex]\frac{2}{0.1\times 10^{- 9}}\int_{0}^{0.25\times 10^{- 10}}\frac{1 - cos(\frac{4\pi x}{d}}{2}) dx[/tex]

P(x) = [tex]\frac{2}{0.1\times 10{- 9}}[\frac{0.025\times 10^{- 9}\times 4\pi - \frac{sin(4\pi\times 0.025\times 10^{- 9})}{0.1\times 10^{- 9}}}{8\pi}] [/tex]

On solving the above eqn, we get:

P(x) = 0.25

P(x) = 0.25