Consider a thin film with n=1.42, immersed in air, and a light of 650nm wavelength. Determine the thickness of film that will create reflected light that constructively interferes.

Respuesta :

Answer:

[tex]343.31\times 10^{-9}m[/tex]

Explanation:

For constructive interference, condition is that ( m=0,1,2.....)

[tex]2nt=(m+\frac{1}{2})\lambda[/tex]

Take for m=1,

[tex]2nt=(\frac{3}{2})\lambda[/tex]

Given that, the refractive index of a thin film is,

[tex]n=1.42[/tex]

And the wavelength of the light is,

[tex]\lambda=650 nm=650\times 10^{-9}m[/tex]

Now,

[tex]2t=\frac{3}{2}\frac{ (650\times 10^{-9})}{1.42} \\t=\frac{3}{4}\frac{ (650\times 10^{-9})}{1.42}\\t=343.31\times 10^{-9}m[/tex]

Therefore, the thickness of film which create reflected light is [tex]343.31\times 10^{-9}m[/tex]