Answer:
Cardiac output:[tex]F=0.055 L\s[/tex]
Step-by-step explanation:
Given : The dye dilution method is used to measure cardiac output with 3 mg of dye.
To Find : Find the cardiac output.
Solution:
Formula of cardiac output:[tex]F=\frac{A}{\int\limits^T_0 {c(t)} \, dt}[/tex] ---1
A = 3 mg
[tex]\int\limits^T_0 {c(t)} \, dt =\int\limits^{10}_0 {20te^{-0.06t}} \, dt[/tex]
Do, integration by parts
[tex][\int{20te^{-0.6t}} \, dt]^{10}_0=[20t\int{e^{-0.6t} \,dt}-\int[\frac{d[20t]}{dt}\int {e^{-0.6t} \, dt]dt]^{10}_0[/tex]
[tex][\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20}{0.6}\int {e^{-0.6t} \,dt]^{10}_0[/tex]
[tex][\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20e^{-0.6t}}{(0.6)^2}]^{10}_{0}[/tex]
[tex][\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-200e^{-6}}{0.6}+\frac{20e^{-6}}{(0.6)^2}]+\frac{20}{(0.60^2}[/tex]
[tex][\int{20te^{-0.6t}} \, dt]^{10}_0=\frac{20(1-e^{-6}}{(0.6)^2}-\frac{200e^{-6}}{0.6}[/tex]
[tex][\int{20te^{-0.6t}} \, dt]^{10}_0\sim {54.49}[/tex]
Substitute the value in 1
Cardiac output:[tex]F=\frac{3}{54.49}[/tex]
Cardiac output:[tex]F=0.055 L\s[/tex]
Hence Cardiac output:[tex]F=0.055 L\s[/tex]