Answer:
total length of the spiral is L is 5378.01 m
Explanation:
Given data:
Inner radius R1=2.5 cm
and outer radius R2= 5.8 cm.
the width of spiral winding is (d) =1.6 \mu m = 1.6x 10^{-6} m
the total length of the spiral is L is given as
[tex]= \frac{(Area\ of\ the\ spiraing\ portion\ on\ the\ disk)}{d}[/tex]
[tex]=\frac{\pi *(R_2)^2 - \pi*(R_1)^2}{d}[/tex]
[tex]=\frac{\pi *(0.058)^2 - \pi*(0.025)^2}{1.6*10^{-6}}[/tex]
= 5378.01 m