Respuesta :

Answer:

  ≈ 35.91

Step-by-step explanation:

The law of sines lets you find the other sides:

  DN/sin(M) = MN/sin(D) = DM/sin(N)

Angle D is 180° -75° -45° = 60°, so the remaining sides are ...

  DN = sin(M)/sin(N)×DM = sin(75°)/sin(45°)×10 ≈ 13.66

  MN = sin(D)/sin(N)×DM = sin(60°)/sin(45°)×10 ≈ 12.25

The perimeter is the sum of the side lengths, so is ...

  10 + 13.66 +12.25 = 35.91

Answer:

35.91 units ( approx )

Step-by-step explanation:

Given,

In triangle DMN,

DM = 10

, m∠M = 75°, m∠N = 45°,

By the law of sine,

[tex]\frac{\sin M}{DN}=\frac{\sin N}{MD}=\frac{\sin D}{MN}----(1)[/tex]

∵ m∠M + m∠N + m∠D = 180°,

75° + 45° + m∠D = 180°,

120° + m∠D = 180°

m∠D = 60°,

From equation (1),

[tex]\frac{\sin 75}{DN}=\frac{\sin 45}{10}=\frac{\sin 60}{MN}[/tex]

[tex]\frac{\sin 75}{DN}=\frac{\sin 45}{10}[/tex]

[tex]\implies DN = \frac{10\times \sin 75}{\sin 45}\approx 13.66\text{ unit}[/tex],

[tex]\frac{\sin 45}{10}=\frac{\sin 60}{MN}[/tex]

[tex]\implies MN = \frac{10\times \sin 60}{sin 45}\approx 12.25\text{ unit}[/tex]

Hence, the perimeter of the triangle DMN = DM + MN + DN

= 10 + 13.66 + 12.25

= 35.91 units.