Respuesta :

270

Further explanation

Given:

  • [tex]\boxed{ \ f(x) = 7 + 4x \ }[/tex]
  • [tex]\boxed{ \ g(x) = \frac{1}{2x} \ }[/tex]

Question:

What is the value of [tex]\boxed{ \ \bigg( \frac{f}{g} \bigg)(5)? \ }[/tex]

The Process:

The form of [tex]\boxed{ \ \bigg( \frac{f}{g} \bigg)(x) \ }[/tex] means that f(x) is divided by g(x).

[tex]\boxed{\boxed{ \ \bigg( \frac{f}{g} \bigg)(x) \ } \rightarrow \boxed{ \ \frac{f(x)}{g(x)} \ }}[/tex]

Let us solve the problem.

[tex]\boxed{ \ \bigg( \frac{f}{g} \bigg)(x) = \frac{7 + 4x}{\frac{1}{2x}} \ }[/tex]

[tex]\boxed{ \ \bigg( \frac{f}{g} \bigg)(x) = (7 + 4x) \times \frac{2x}{1} \ }[/tex]

Thus, we get [tex]\boxed{{ \ \bigg( \frac{f}{g} \bigg)(x) = 14x + 8x^2 \ }}[/tex]

And now, we can calculate the value of [tex]\bigg( \frac{f}{g} \bigg)(5)[/tex].

[tex]\boxed{ \ \bigg( \frac{f}{g} \bigg)(5) = 14(5) + 8(5)^2 \ }[/tex]

[tex]\boxed{ \ \bigg( \frac{f}{g} \bigg)(5) = 70 + 200 \ }[/tex]

Thus, the value is 270.

- - - - - - - - - - -

Alternative thinking

[tex]\boxed{ \ \bigg( \frac{f}{g} \bigg)(5) = \frac{7 + 4(5)}{\frac{1}{2(5)}} \ }[/tex]

[tex]\boxed{ \ \bigg( \frac{f}{g} \bigg)(5) = (7 + 20) \times 10} \ }[/tex]

[tex]\boxed{\boxed{ \ \bigg( \frac{f}{g} \bigg)(5) = 270 \ }}[/tex]

Learn more

  1. If f(x) = x² – 2x and g(x) = 6x + 4, for which value of x does (f o g)(x) = 0? brainly.com/question/1774827
  2. Solve for the value of the function composition brainly.com/question/2142762
  3. If g(x) is the inverse of f(x), what is the value of f(g(2)) https://brainly.com/question/1517760

Keywords: if, f(x), g(x), function, divide by, the value, (f/g)(5), 5, 270

#learnwithBrainly