Plan: “MI AUTO PARA TAXI”
El señor Alberto decide adquirir un auto con el fin de realizar servicios de taxi. El precio del vehículo es de S/45 000, pero solo dispone de S/20 000. Entonces decide financiar el dinero que le falta por medio de una entidad bancaria. Si entre los dos planes de préstamo ofrecidos, debe escoger uno:

¿Cuál de las dos opciones le recomendarías al señor Alberto?

Plan MI AUTO PARA TAXI El señor Alberto decide adquirir un auto con el fin de realizar servicios de taxi El precio del vehículo es de S45 000 pero solo dispone class=

Respuesta :

Answer:

Plan II is more favorable because the total amount to pay is less and the time to pay is greater than Plan I.

Step-by-step explanation:

The question in English is

Plan: "MY AUTO FOR TAXI"

Mr. Alberto decides to buy a car in order to perform taxi services. The price of the vehicle is S/45 000, but only S/20 000 is available. He then decides to finance the missing money through a bank. If between the two loan plans offered, you must choose one:

Which of the two options would you recommend to Mr. Alberto?

we know that    

The compound interest formula is equal to  

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]  

where  

A is the total amount due  

P is the amount owed

r is the rate of interest  in decimal

t is Number of Time Periods  

n is the number of times interest is compounded per year

in this problem we have  

Plan I

[tex]t=2\ years\\ P=\$45,000-\$20,000=\$25,000\\ r=0.05\\n=1[/tex]  

substitute in the formula

[tex]A=25,000(1+\frac{0.05}{1})^{1*2}[/tex]  

[tex]A=25,000(1.05)^{2}[/tex]  

[tex]A=\$27,562.50[/tex]  

Plan II

[tex]t=3\ years\\P=\$45,000-\$20,000=\$25,000\\ r=0.03\\n=1[/tex]  

[tex]A=25,000(1+\frac{0.03}{1})^{1*3}[/tex]  

[tex]A=25,000(1.03)^{3}[/tex]  

[tex]A=\$27,318.18[/tex]  

Compare

Plan I ----> t=2 years A=$27,562.50

Plan II----> t=3 years A=$27,318.18

therefore

Plan II is more favorable because the total amount to pay is less and the time to pay is greater than Plan I.

Otras preguntas