Respuesta :

Answer:

Inverse of [tex]\bold{y=x^{2}-10 x}[/tex] is [tex]\bold{y=5 \pm \sqrt{x+25}}[/tex]

Solution:

Given that

[tex]y=x^{2}-10 x[/tex]

Adding [tex]5^{2}[/tex] on both sides

[tex]y+5^{2}=x^{2}-10 x+5^{2}[/tex]

Rewrite 10x as 2(5)x,

[tex]y+5^{2}=x^{2}-2(5) x+5^{2}[/tex]

By using [tex]\left(a-b)^{2}=a^{2}-2 a b+b^{2}\right[/tex]  , we get

[tex]y+5^{2}=(x-5)^{2}[/tex]

[tex]y+25=(x-5)^{2}[/tex]  (Completing the square)

Now swap x and y, we get

[tex]x+25=(y-5)^{2}[/tex]

Rewrite the above equation,

[tex](y-5)^{2}=x+25[/tex]

Taking square root of both sides,

[tex]y-5=\pm \sqrt{x+25}[/tex]

Adding 5 on both sides,

[tex]y=5 \pm \sqrt{x+25}[/tex]

Hence inverse of [tex]\bold{y=x^{2}-10 x \text { is } y=5 \pm \sqrt{x+25}}[/tex]  

Answer:

its d on edg

Step-by-step explanation: