Answer:
The vapor pressure at temperature 363 K is 0.6970 atm
The vapor pressure at 383 K is 1.410 atm
Explanation:
To calculate [tex]\Delta H_{vap}[/tex] of the reaction, we use clausius claypron equation, which is:
[tex]\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]P_1[/tex] = vapor pressure at temperature [tex]T_1[/tex]
[tex]P_2[/tex] = vapor pressure at temperature [tex]T_2[/tex]
[tex]\Delta H_{vap}[/tex] = Enthalpy of vaporization
R = Gas constant = 8.314 J/mol K
1) [tex]\Delta H_{vap}=40.68 kJ/mol=40680 J/mol[/tex]
[tex]T_1[/tex] = initial temperature =363 K
[tex]T_2[/tex] = final temperature =373 K
[tex]P_2=1 atm, P_1=?[/tex]
Putting values in above equation, we get:
[tex]\ln(\frac{1 atm}{P_1})=\frac{40680 J/mol}{8.314J/mol.K}[\frac{1}{363}-\frac{1}{373}][/tex]
[tex]P_1=0.69671 atm \approx 0.6970 atm[/tex]
The vapor pressure at temperature 363 K is 0.6970 atm
2) [tex]\Delta H_{vap}=40.68 kJ/mol=40680 J/mol[/tex]
[tex]T_1[/tex] = initial temperature =373 K
[tex]T_2[/tex] = final temperature =383 K
[tex]P_1=1 atm, P_2?[/tex]
Putting values in above equation, we get:
[tex]\ln(\frac{P_2}{1 atm})=\frac{40680 J/mol}{8.314J/mol.K}[\frac{1}{373}-\frac{1}{383}][/tex]
[tex]P_2=1.4084 atm \approx 1.410 atm[/tex]
The vapor pressure at 383 K is 1.410 atm