In white phosphorus, P atoms are joined into P4 molecules. White phosphorus is commonly supplied in chalk-like cylindrical form. Its density is 1.823 g/cm3. For a cylinder of white phosphorus 7.00 cm long and 1.26 cm in diameter, determine the number of moles of P present and the total number of P4 atoms

Respuesta :

Explanation:

It is known that volume of a cylinder is as follows.

              Volume of cylinder = [tex]\pi \times r^{2} \times h[/tex]

                                               = [tex]3.14 \times \frac{1.26}{2} \times 7[/tex]

                                               = 8.72 [tex]cm^{3}[/tex]

Therefore, mass of [tex]P_{4}[/tex] = [tex]density \times volume[/tex]

                                 = [tex]1.823 g/cm^{3} \times 8.72 cm^{3}[/tex]

                                 = 15.90 g

As, number of moles of a substance equals its mass divided by its molar mass.

Hence.     No. of moles of [tex]P_{4} = \frac{mass}{\text{molar mass}}[/tex]

                                                 = [tex]\frac{15.90 g}{123.89 g/mol}[/tex]

                                                 = 0.1283 mol

According to moles concept, in one mole there are [tex]6.022 \times 10^{23}[/tex] atoms.

Hence, in 0.1283 mol number of atoms of [tex]P_{4}[/tex] are calculated as follows.

             Molecules of [tex]P_{4} = 0.1283 \times 6.022 \times 10^{23}[/tex]

                                         = [tex]0.772 \times 10^{23}[/tex] molecules

                                         = [tex]7.72 \times 10^{22}[/tex] molecules

Therefore, atoms of P are calculated as follows.

                      [tex]4 \times 7.72 \times 10^{22}[/tex] molecules  

                         = [tex]3.09 \times 10^{23}[/tex] atoms

Thus, we can conclude that total number of [tex]P_{4}[/tex] atoms are [tex]3.09 \times 10^{23}[/tex].