Answer:
The system [tex]x+y=7\\3x+2y=17[/tex] has a unique solution [tex]x=3\\y=4[/tex]
Step-by-step explanation:
We have the system of equations:
[tex]x+y=7\\3x+2y=17[/tex]
To solve this system for Gauss-Jordan method we need the augmented matrix, which is:
[tex]\left[\begin{array}{cc|c}1&1&7\\3&2&17\end{array}\right][/tex]
Next we need to transform the augmented matrix to the reduced row echelon form via elementary row operations as follows:
[tex]\left[\begin{array}{cc|c}1&1&7\\0&-1&-4\end{array}\right][/tex]
[tex]\left[\begin{array}{cc|c}1&1&7\\0&1&4\end{array}\right][/tex]
[tex]\left[\begin{array}{cc|c}1&0&3\\0&1&4\end{array}\right][/tex]
From the reduced row echelon form we have the solution of the system
[tex]x=3\\y=4[/tex]