Consider the functions f(x)=4x+15 and g(x)=x^2-x+6. At what positive integer value of x does the quadratic function, g(x), begin to exceed the linear function, f(x)?

Respuesta :

Answer:

At the positive integer value of x=7 the quadratic function begin to exceed the linear function

Step-by-step explanation:

we have

[tex]f(x)=4x+15[/tex]

[tex]g(x)=x^{2}-x+6[/tex]

using a graphing tool

see the attached figure

For x < -1.405 and x > 6.405 the quadratic function begin to exceed the linear function

so

At the positive integer value of x=7 the quadratic function begin to exceed the linear function

Ver imagen calculista