Answer:
[tex]m_{SO_3}=18.93gSO_3[/tex]
[tex]V_{SO_3}=5.3LSO_3[/tex]
Explanation:
Hello,
STP conditions are P=1 atm and T=273.15 K, thus, the reacting moles are:
[tex]n_{SO_2}=\frac{5.3L*1atm}{0.082\frac{atm*L}{mol*K}*273.15K}=0.2366molSO_2\\n_{O_2}=\frac{4.7L*1atm}{0.082\frac{atm*L}{mol*K}*273.15K}=0.2098molO_2[/tex]
Now, the balanced chemical reaction turns out into:
[tex]2SO_2(g) + O_2(g) --> 2SO_3(g)[/tex]
Thus, the exact moles of oxygen that completely react with 0.2366 moles of sulfur dioxide are (limiting reagent identification):
[tex]0.2366molSO_2*\frac{1molO_2}{2molSO_2}=0.1182molO_2[/tex]
Since 0.2098 moles of oxygen are available, we stipulate the oxygen is in excess and the sulfur dioxide is the limiting reagent. In such a way, the yielded grams of sulfur trioxide turn out into:
[tex]m_{SO_3}=0.2366molSO_2*\frac{2molSO_3}{2molSO_2}*\frac{80gSO_3}{1molSO_3} \\m_{SO_3}=18.93gSO_3[/tex]
By using the ideal gas equation, one computes the volume as:
[tex]V_{SO_3}=\frac{mRT}{MP}=\frac{18.93g*0.082\frac{atm*L}{mol*K} *273.15K}{80g/mol*1atm}\\V_{SO_3}=5.3LSO_3[/tex]
It has sense for volume since the mole ratio is 2/2 between sulfur dioxide and sulfur trioxide.
Best regards.