Consider a rectangle with dimensions x and y in cm. If x Is growing at a rate of 2 cm/s and y is growing at a rate of 3 cm/s, find the rate at which the length of the diagonal is changing when x= 5 cm and y= 8 cm.

Respuesta :

Answer:

dc/dt = 3.6cm/s

Explanation:

Let c be the length of the diagonal:

[tex]c=\sqrt{x^2+y^2}[/tex]   The rate at which c is changing is:

[tex]\frac{dc}{dt} =\frac{2*x*\frac{dx}{dt} +2*y*\frac{dy}{dt}}{2*\sqrt{x^2+y^2} }[/tex]

where:

x=5cm                  dx/dt=2cm/s

y=8cm                  dy/dt=3cm/s

[tex]\frac{dc}{dt} =3.6cm/s[/tex]