Respuesta :

Answer:

6x² + 5x - 2 = 0

Step-by-step explanation:

Given

2x² - 5x - 6 = 0 ← in standard form

with a = 2, b = - 5, c = - 6, then

sum of roots α + β = - [tex]\frac{b}{a}[/tex] = [tex]\frac{5}{2}[/tex]

product of roots = [tex]\frac{c}{a}[/tex] = - 3, then

sum of new roots = [tex]\frac{1}{\alpha }[/tex] + [tex]\frac{1}{\beta }[/tex]

= [tex]\frac{\beta+\alpha  }{\alpha \beta }[/tex]

= [tex]\frac{\frac{5}{2} }{-3}[/tex] = - [tex]\frac{5}{6}[/tex]

product of new roots = [tex]\frac{1}{\alpha }[/tex] × [tex]\frac{1}{\beta }[/tex]

= [tex]\frac{1}{\alpha\beta  }[/tex] = - [tex]\frac{1}{3}[/tex]

Hence the required equation is

x² + [tex]\frac{5}{6}[/tex] x - [tex]\frac{1}{3}[/tex] = 0 or

6x² + 5x - 2 = 0 ( multiplying through by 6 )

                           

A quadratic equation is represented as: [tex]\mathbf{x^2 - (sum\ of\ roots)x + (product\ of\ roots) = 0}[/tex].

The required quadratic equation is:[tex]\mathbf{x^2 + \frac 56x - \frac{1}{3} = 0}[/tex]

The equation is given as:

[tex]\mathbf{2x^2 - 5x - 6 = 0}[/tex]

Divide through by 2

[tex]\mathbf{x^2 - \frac{5}{2}x - 3 = 0}[/tex]

So, we have:

[tex]\mathbf{\alpha + \beta = -(-\frac{5}{2})}[/tex]

[tex]\mathbf{\alpha + \beta = \frac{5}{2}}[/tex] --- (1)

And:

[tex]\mathbf{\alpha \beta = -3}[/tex] --- (2)

Divide (1) by (2)

[tex]\mathbf{\frac{\alpha + \beta}{\alpha \beta} = \frac{5}{2} \div -3}[/tex]

[tex]\mathbf{\frac{\alpha + \beta}{\alpha \beta} =- \frac{5}{6}}[/tex]

Split

[tex]\mathbf{\frac{\alpha}{\alpha \beta}+ \frac{\beta}{\alpha \beta} =- \frac{5}{6}}[/tex]

[tex]\mathbf{\frac{1}{\beta}+ \frac{1}{\alpha } =- \frac{5}{6}}[/tex]

Take inverse of [tex]\mathbf{\alpha \beta = -3}[/tex]

[tex]\mathbf{\frac{1}{\alpha \beta }= -\frac 13}[/tex]

So, the equation with roots 1/α and 1/β is:

[tex]\mathbf{x^2 - (\frac{1}{\beta}+ \frac{1}{\alpha })x + \frac{1}{\alpha \beta } = 0}[/tex]

This gives

[tex]\mathbf{x^2 - (-\frac 56)x - \frac{1}{3} = 0}[/tex]

[tex]\mathbf{x^2 + \frac 56x - \frac{1}{3} = 0}[/tex]

Hence, the quadratic equation is:[tex]\mathbf{x^2 + \frac 56x - \frac{1}{3} = 0}[/tex]

Read more about quadratic equations at:

https://brainly.com/question/17788108