Respuesta :

Answer:

[tex]P(x)=(x+7(x+4)(x-3)(x-5)=x^{4}+3x^{3}-45x^{2}-59x+420[/tex]

Step-by-step explanation:

Given:

The zeros of the polynomial are -7, -4, 3 and 5.

The coefficient of [tex]x^{4}[/tex] is 1.

A polynomial of degree 4 has maximum 4 zeros.

Let the polynomial be [tex]P(x)[/tex].

Since, [tex]P(x)[/tex] has zeros -7, -4, 3 and 5, therefore,

[tex]P(x)=a(x-(-7))(x-(-4))(x-3)(x-5)\\P(x)=a(x+7)(x+4)(x-3)(x-5)[/tex]

Where, [tex]a[/tex] is coefficient of [tex]x^{4}[/tex].

But, coefficient of [tex]x^{4}[/tex] is 1. So, [tex]a=1[/tex]

[tex]P(x)=(x+7)(x+4)(x-3)(x-5)\\P(x)=(x^{2}+11x+28)(x^{2}-8x+15)\\P(x)=x^{4}-8x^{3}+15x^{2}+11x^{3}-88x^{2}+165x+28x^{2}-224x+420\\P(x)=x^{4}+3x^{3}-45x^{2}-59x+420[/tex]