Respuesta :

x-2y=3                        ⇒y=(x-3)/2
3x²-5xy-16y=24

We can suggest this system of equations by substitution method.
y=(x-3)/2

3x²-5x(x-3)/2-16(x-3)/2=24
least common multiple=2
6x²-5x(x-3)-16(x-3)=48
6x²-5x²+15x-16x+48=48
x²-x=0
x(x-1)=0
Now, we solve two equations:
1)x=0    ⇒y=(0-3)/2=-3/2
2)x-1=0
x=1  ⇒y=(1-3)/2=-1



Answer: we can two solutions:
solution1:  x=0; y=-3/2
solution2:  x=1, y=-1

Value of x = 0 or 1 and value of y = [tex]\frac{-3}{2}[/tex] or -1 for the given quadratic equation.

What is quadratic equation?

" Quadratic equation is defined as the polynomial whose highest degree of the given variable is equals to 2."

According to the question,

Given equations,

[tex]x-2y=3[/tex]

⇒[tex]x=3 + 2y[/tex]                                ____(1)

Quadratic equation,

[tex]3x^{2} -5xy-16y=24[/tex]                 ____(2)

Substitute the value of 'x' from (1) in (2) quadratic equation we get,

[tex]3(3+2y)^{2} -5(3+2y)y-16y=24[/tex]

⇒[tex]3(9+12y+4y^{2} )-5y(3+2y) -16y-24=0[/tex]

⇒[tex]27+36y+12y^{2} -15y-10y^{2} -16y-24=0[/tex]

⇒[tex]2y^{2} +5y+3=0[/tex]

⇒[tex]2y^{2} +2y+3y+3=0[/tex]

⇒[tex]2y(y+1)+3(y+1)=0[/tex]

⇒[tex](2y+3)(y+1)=0[/tex]

⇒[tex](2y+3)=0 or (y+1)=0[/tex]

⇒[tex]y=\frac{-3}{2} or y = -1[/tex]

Substitute in (1) to get the value of 'x' ,

[tex]x= 3+ 2(\frac{-3}{2}) or x = 3 + 2 (-1)[/tex]

⇒  [tex]x = 0 or x = 1[/tex]

Hence, value of x = 0 or 1 and value of y = [tex]\frac{-3}{2}[/tex] or -1 for the given quadratic equation.

Learn more about quadratic equation here

https://brainly.com/question/2263981

#SPJ2