Respuesta :

Answer:

From figure A

The value of ∠ B = 75.74°   ,  ∠ C = 70.26° and  AB = 27.37

From figure B

The value of ∠ A = 42.8°   ,  ∠ B = 106.2° and  AC = 30.04

Step-by-step explanation:

Given first figure as :

AC = 28.2

BC = 16.5

∠ A = 34°

Let AB = c

From law of sines

[tex]\dfrac{a}{Sin A}[/tex] = [tex]\dfrac{b}{Sin B}[/tex] = [tex]\dfrac{c}{Sin C}[/tex]

Or, [tex]\dfrac{a}{Sin A}[/tex] = [tex]\dfrac{b}{Sin B}[/tex]

or, [tex]\dfrac{16.5}{Sin 34}[/tex] = [tex]\dfrac{28.2}{Sin B}[/tex]

Or,  29.506 =  [tex]\dfrac{28.2}{Sin B}[/tex]

Or, Sin B =  [tex]\dfrac{28.2}{29.5}[/tex]  

Or, Sin B = 0.955

∴  ∠B = [tex]Sin^{-1}[/tex] 0.955

I.e∠ B = 75.74

Now, ∠ C = 180° - ( ∠A + ∠B )

Or, ∠ C = 180° - ( 34° + 75.74° )

Or, ∠ C = 70.26°

Now, Again

[tex]\dfrac{b}{Sin B}[/tex] = [tex]\dfrac{c}{Sin C}[/tex]

so,  [tex]\dfrac{28.2}{Sin 75.74}[/tex] = [tex]\dfrac{c}{Sin 70.26}[/tex]

Or,   [tex]\dfrac{28.2}{0.9691}[/tex] = [tex]\dfrac{c}{0.9412}[/tex]

Or, c = 29.09 × 0.9412

∴    c = 27.37

I.e AB = 27.37

Hence,  The value of ∠ B = 75.74°   ,  ∠ C = 70.26° and  AB = 27.37

From figure second

Given as :

AB = c= 12

BC = a = 16

∠ C = 31°

let AC = b

From law of sines

[tex]\dfrac{a}{Sin A}[/tex] = [tex]\dfrac{b}{Sin B}[/tex] = [tex]\dfrac{c}{Sin C}[/tex]

Or, [tex]\dfrac{a}{SinA }[/tex] = [tex]\dfrac{c}{Sin C}[/tex]

or,  [tex]\dfrac{16}{Sin A}[/tex] = [tex]\dfrac{12}{Sin 31}[/tex]

or,  [tex]\dfrac{16}{Sin A}[/tex] = [tex]\dfrac{12}{0.51}[/tex]

Or, [tex]\dfrac{16}{Sin A}[/tex] = 23.52

∴ Sin A = [tex]\dfrac{16}{23.52}[/tex]

I.e Sin A = 0.68

Or,  ∠ A = [tex]Sin^{-1}[/tex] 0.68

or,  ∠ A = 42.8°

Now,  ∠ B = 180° - ( 31° + 42.8° )

Or,  ∠ B = 106.2°

Now,  [tex]\dfrac{b}{Sin B}[/tex] = [tex]\dfrac{c}{Sin C}[/tex]

or,  [tex]\dfrac{b}{Sin 106.2}[/tex] = [tex]\dfrac{16}{Sin 31}[/tex]

Or, [tex]\dfrac{b}{0.96}[/tex] = [tex]\dfrac{16}{0.51}[/tex]

or, b = 31.3×0.96

∴ b = 30.04

Hence The value of ∠ A = 42.8°   ,  ∠ B = 106.2° and  AC = 30.04

Answer