Respuesta :

Answer:

see the explanation

Step-by-step explanation:

we know that

An isosceles triangle has two equal sides

step 1

Find the coordinates of point X (midpoint of segment AC)

we have

A(0,2a), C(2a,0)

The formula to calculate the midpoint between two points is equal to

[tex]M(\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]

substitute the values

[tex]X(\frac{0+2a}{2},\frac{2a+0}{2})[/tex]

[tex]X(a,a)[/tex]

step 2

Find the length side AX

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

A(0,2a), X(a,a)

substitute

[tex]AX=\sqrt{(a-2a)^{2}+(a-0)^{2}}[/tex]

[tex]AX=\sqrt{(-a)^{2}+(a)^{2}}[/tex]

[tex]AX=a\sqrt{2}\ units[/tex]

step 3

Find the length side BX

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

B(0,0), X(a,a)

substitute

[tex]BX=\sqrt{(a-0)^{2}+(a-0)^{2}}[/tex]

[tex]BX=\sqrt{(a)^{2}+(a)^{2}}[/tex]

[tex]BX=a\sqrt{2}\ units[/tex]

step 4

Compare the length side AX and BX

[tex]AX=a\sqrt{2}\ units[/tex]

[tex]BX=a\sqrt{2}\ units[/tex]

[tex]AX=BX[/tex]

so

The triangle AXB has two equal sides

therefore

Triangle AXB is an isosceles triangle

Answer:

Soooooooooooooo

Step-by-step explanation:

Okay.... Let me look up how to do this