determine the domain of the function f(x) = x^2 + 6x +5/x^2 - 25

a. (-1, 5)
b. (5, 5)
c. (-infinity, -1) U (-1,5) U (5, infinity)
d. (-infinity, -5) U (-5, 5) U (5, infinity)

determine the domain of the function fx x2 6x 5x2 25a 1 5b 5 5c infinity 1 U 15 U 5 infinityd infinity 5 U 5 5 U 5 infinity class=

Respuesta :

Answer:

The answer to your question is the last option

Step-by-step explanation:

Here there is a rational function so, we need to find the values where the denominator equals zero.

                         [tex]f(x) = \frac{x^{2} + 6x + 5}{x^{2}- 25 }[/tex]

                                [tex]x^{2} - 25 = 0[/tex]

Factor                      (x - 5)(x + 5) = 0

                                 

                               x₁ - 5 = 0               x₂ + 5 = 0

The function does not exist in -5 and 5

                              x₁ = 5                    x₂ = -5

Domain

                      (  -∞ , -5) U (-5, 5) U (5, ∞)

Answer:

the answer is d in edge

Step-by-step explanation:

(–∞, –5) U (–5, 5) U (5, ∞)