Answer:
[tex]-\frac{ln(662)-2}{4}[/tex]
{-1.12}
Step-by-step explanation:
[tex]e^{2 - 4x} = 662[/tex]
Solve this exponential equation using natural log
Take natural log ln on both sides
[tex]ln(e^{2 - 4x}) = ln(662)[/tex]
As per the property of natural log , move the exponent before log
[tex]2-4x(ln e) = ln(662)[/tex]
we know that ln e = 1
[tex]2-4x= ln(662)[/tex]
Now subtract 2 from both sides
[tex]-4x= ln(662)-2[/tex]
Divide both sides by -4
[tex]x=-\frac{ln(662)-2}{4}[/tex]
Solution set is {[tex]x=-\frac{ln(662)-2}{4}[/tex]}
USe calculator to find decimal approximation
x=-1.12381x=-1.12