To solve this problem it is necessary to apply the concepts related to Young's Module and its respective mathematical and modular definitions. In other words, Young's Module can be expressed as
[tex]\Upsilon = \frac{F/A}{\Delta L/L_0}[/tex]
Where,
F = Force/Weight
A = Area
[tex]\Delta L[/tex]= Compression
[tex]L_0[/tex]= Original Length
According to the values given we have to
[tex]\Upsilon_{steel} = 200*10^9Pa[/tex]
[tex]\Delta L = 5.6*10^{-7}m[/tex]
[tex]L_0 = 3.2m[/tex]
[tex]r= 0.59m \rightarrow A = \pi r^2 = \pi *0.59^2 = 1.0935m^2[/tex]
Replacing this values at our previous equation we have,
[tex]\Upsilon = \frac{F/A}{\Delta L/L_0}[/tex]
[tex]200*10^9 = \frac{F/1.0935}{5.6*10^{-7}/3.2}[/tex]
[tex]F = 38272.5N[/tex]
Therefore the Weight of the object is 3.82kN