Respuesta :

Answer:

Length of rectangle = 24 inches

Width of rectangle = 1 inches

Step-by-step explanation:

Area of rectangle = 24 square inches

Perimeter of rectangle = 50 inches

Formulas:

Area of rectangle = [tex]l\times w[/tex]

Perimeter of rectangle = [tex]2(l+w)[/tex]

where [tex]l[/tex] represents length of rectangle and [tex]w[/tex] represents width of rectangle.

So, we can get two equations for [tex]l[/tex] and [tex]w[/tex]

A) [tex]l\times w=24[/tex]    [Area]

B) [tex]2(l+w)=50[/tex]     [ Perimeter ]

Simplifying equation B.

Dividing both sides by 2.

[tex]\frac{2(l+w)}{2}=\frac{50}{2}[/tex]  

[tex]l+w=25[/tex]  

Solving for [tex]l[/tex] in terms of width.

Subtracting [tex]w[/tex] both sides.

[tex]l+w-w=25-w[/tex]  

∴ [tex]l=25-w[/tex]

Substituting value of [tex]l[/tex] in terms of [tex]w[/tex] in equation A.

[tex](25-w)w=24[/tex]

Using distribution.

[tex]25w-w^2=24[/tex]

Adding [tex]w^2[/tex] both sides.

[tex]25w-w^2+w^2=24+w^2[/tex]

[tex]25w=24+w^2[/tex]

subtracting [tex]25 w[/tex] both sides

[tex]25w-25w=24+w^2-25w [/tex]

[tex]0=w^2-25w+24[/tex]

We have a quadratic equation. [tex]w^2-25w+24=0[/tex]

We solve for [tex]w[/tex] by factor method.

Splitting middle term into two terms such that the sum of the two =[tex]-25w[/tex] and product of two = [tex]24w^2[/tex]

[tex]w^2-24w-w+24=0[/tex]

Factoring in pairs.

[tex]w(w-24)-1(w-24)=0[/tex]

Factoring as a whole

[tex](w-24)(w-1)=0[/tex]

So, we have

[tex]w-24=0[/tex] and [tex]w-1=0[/tex]

By adding 24 to one equation and adding 1 to other we get

[tex]w-24+24=0+24[/tex] and [tex]w-1+1=0+1[/tex]

[tex]w=24[/tex] and [tex]w=1[/tex]

So length can be found out by plugging value of [tex]w[/tex] in the length equation.

[tex]l=25-24=1[/tex] and [tex]l=25-1=24[/tex]

Since length is always the longer side of rectangle so,  the dimensions of rectangle can be given by.

length = 24 inches  (answer)

width = 1 inches (answer)