The cost to rent one chair is $1.5 and one table is $8.5
Step-by-step explanation:
Let,
x be the cost of one chair
y be the cost of one table
According to given statement;
2x+12y=105 Eqn 1
5x+3y=33 Eqn 2
Multiplying Eqn 2 by 4;
[tex]4(5x+3y=33)\\20x+12y=132\ \ \ Eqn\ 3[/tex]
Subtracting Eqn 1 from Eqn 3;
[tex](20x+12y)-(2x+12y)=132-105\\20x+12y-2x-12y=27\\18x=27[/tex]
Dividing both sides by 18
[tex]\frac{18x}{18}=\frac{27}{18}\\x=1.5[/tex]
Putting x=1.5 in Eqn 1
[tex]2(1.5)+12y=105\\3+12y=105\\12y=105-3\\12y=102\\[/tex]
Dividing both sides by 12
[tex]\frac{12y}{12}=\frac{102}{12}\\y=8.5[/tex]
The cost to rent one chair is $1.5 and one table is $8.5
Keywords: linear equations, subtraction
Learn more about linear equations at:
#LearnwithBrainly