Respuesta :
Answer: The value of [tex]K_c[/tex] is coming out to be 0.412
Explanation:
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] .....(1)
- For [tex]Sb_2S_3[/tex]
Given mass of [tex]Sb_2S_3[/tex] = 1.00 kg = 1000 g (Conversion factor: 1 kg = 1000 g)
Molar mass of [tex]Sb_2S_3[/tex] = 339.7 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of }Sb_2S_3=\frac{1000g}{339.7g/mol}=2.944mol[/tex]
- For hydrogen gas:
Given mass of hydrogen gas = 10.0 g
Molar mass of hydrogen gas = 2 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of hydrogen gas}=\frac{10.0g}{2g/mol}=5mol[/tex]
- For hydrogen sulfide:
Given mass of hydrogen sulfide = 72.6 g
Molar mass of hydrogen sulfide = 34 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of hydrogen sulfide}=\frac{72.6g}{34g/mol}=2.135mol[/tex]
The chemical equation for the reaction of antimony sulfide and hydrogen gas follows:
[tex]Sb_2S_3(s)+3H_2(g)\rightarrow 2Sb(s)+3H_2S(g)[/tex]
Initial: 2.944 5
At eqllm: 2.944-x 5-3x 2x 3x
We are given:
Equilibrium moles of hydrogen sulfide = 2.135 moles
Calculating for 'x', we get:
[tex]\Rightarrow 3x=2.135\\\\\Rightarrow x=\frac{2.135}{3}=0.712[/tex]
Equilibrium moles of hydrogen gas = (5 - 3x) = (5 - 3(0.712)) = 2.868 moles
Volume of the container = 25.0 L
Molarity of a solution is calculated by using the formula:
[tex]\text{Molarity}=\frac{\text{Moles}}{\text{Volume}}[/tex]
The expression of [tex]K_c[/tex] for above equation, we get:
[tex]K_c=\frac{[H_2S]^3}{[H_2]^3}[/tex]
The concentration of solids and liquids are not taken in the expression of equilibrium constant.
[tex]K_c=\frac{(\frac{2.135}{25})^3}{(\frac{2.868}{25})^3}\\\\K_c=0.412[/tex]
Hence, the value of [tex]K_c[/tex] is coming out to be 0.412