Respuesta :

Answer:

-3 is the other solution.

Step-by-step explanation:

As, [tex]\frac{-4}{5}[/tex] is One of the solutions of the equations , So, it should satisfy the equation.

Putting [tex]\frac{-4}{5}[/tex]  in equation 5[tex]x^{2}[/tex] + bx + 12 = 0 ,

We get,

               5×[tex]\frac{-4}{5}[/tex]×[tex]\frac{-4}{5}[/tex]   +    b×[tex]\frac{-4}{5}[/tex]   +  12 = 0.

 5×[tex]\frac{16}{25}[/tex]  +  [tex]\frac{-4b}{5}[/tex]   +  12 = 0.

 After solving ,    16 - 4b  + 60  = 0.

                             4b = 76

                                b = 19.

So, the equation is  5[tex]x^{2}[/tex]  +  19x  + 12 = 0.

      After factorizing , 5[tex]x^{2}[/tex]  + 15x + 4x + 12 = 0.

                                    5x(x+3) + 4(x+3) = 0

                                     (5x+4)(x+3) = 0

Clearly the roots of the equation are  -3 and [tex]\frac{-4}{5}[/tex] .

So, the other solution is -3.