Answer:
[tex]K_c=0.0867[/tex]
Explanation:
Moles of SO₃ = 0.760 mol
Volume = 1.50 L
[tex]Molarity=\frac{Moles\ of\ solute}{Volume\ of\ the\ solution}[/tex]
[tex]Molarity=\frac{0.760}{1.50\ L}[/tex]
[SO₃] = 0.5067 M
Considering the ICE table for the equilibrium as:
[tex]\begin{matrix} & 2SO_3_{(g)} & \rightleftharpoons & 2SO_2_{(g)} & + & O_2_{(g)}\\At\ time, t = 0 & 0.5067 &&0&&0 \\ At\ time, t=t_{eq} & -2x &&2x&&x \\----------------&-----&-&-----&-&-----\\Concentration\ at\ equilibrium:- &0.5067-2x&&2x&&x\end{matrix}[/tex]
Given:
Equilibrium concentration of O₂ = 0.130 mol
Volume = 1.50 L
[tex]Molarity=\frac{Moles\ of\ solute}{Volume\ of\ the\ solution}[/tex]
[tex]Molarity=\frac{0.130}{1.50\ L}[/tex]
[O₂] = x = 0.0867 M
[SO₂] = 2x = 0.1733 M
[SO₃] = 0.5067-2x = 0.3334 M
The expression for the equilibrium constant is:
[tex]K_c=\frac {[SO_2]^2[O_2]}{[SO_3]^2}[/tex]
[tex]K_c=\frac{(0.3334)^2\times 0.0867}{(0.3334)^2}[/tex]
[tex]K_c=0.0867[/tex]