Respuesta :

Answer:

Area of Δ ABC = 21.86 units square

Perimeter of Δ ABC = 24.59 units

Step-by-step explanation:

Given:

In Δ ABC

∠A=45°

∠C=30°

Height of triangle = 4 units.

To find area and perimeter of triangle we need to find the sides of the triangle.

Naming the end point of altitude as 'O'

Given [tex]BO\perp AC[/tex]

For Δ ABO

Since its a right triangle with one angle 45°, it means it is a special 45-45-90 triangle.

The sides of 45-45-90 triangle is given as:

We are given BO (Leg 1) [tex]x=4[/tex]

∴ AO (Leg2) [tex]=x=4[/tex]

∴ AB (hypotenuse) [tex]=x\sqrt2=4\sqrt2=5.66 [/tex]  

For Δ CBO

Since its a right triangle with one angle 30°, it means it is a special 30-60-90 triangle.

The sides of 30-60-90 triangle is given as:

We are given BO (side opposite 30° angle) [tex]=x=4[/tex]

CO (side opposite 60° angle) [tex]=x\sqrt3=4\sqrt3=6.93[/tex]

BC (Hypotenuse) [tex]=2x=2\times 4 =8[/tex]

Length of side AC is given as sum of AO and CO

[tex]AC=AO+CO=4+6.93=10.93[/tex]

Perimeter of Δ ABC= Sum of sides of triangle

⇒ AB+BC+AC

⇒ [tex]5.66+8+10.93[/tex]

⇒ [tex]24.59[/tex] units

Area of Δ ABC = [tex]\frac{1}{2}\times base\times height[/tex]

⇒  [tex]\frac{1}{2}\times 10.93\times 4[/tex]

⇒ [tex]21.86[/tex] units square

Ver imagen jitumahi456