Answer:
Step-by-step explanation:
-5(n^3 - n^2 - 1) + n(n^2 - n)
-5n^3 + 5n^2 + 5 + n^3 - n^2
-4n^3 + 4n^2 + 5 <===
(n^2 - 1)(n + 2) - n^2(n - 3)
n^2(n + 2) - 1(n + 2) - n^3 + 3n^2
n^3 + 2n^2 - n - 2 - n^3 + 3n^2
5n^2 - n - 2 <===
n^2(n - 4) + 5n3 - 6
n^3 - 4n^2 + 5n^3 - 6
6n^3 - 4n^2 - 6 <===
2n(n^2 - 2n - 1) + 3n^2
2n^3 - 4n^2 - 2n + 3n^2
2n^3 -n^2 - 2n <===
putting them in order based on the coefficient n^2 is :
6n^3 - 4n^2 - 6
2n^3 - n^2 - 2n
-4n^3 + 4n^2 + 5
5n^2 - n - 2