On a coordinate plane, a dashed straight line has a negative slope and goes through (0, 2) and (4, 0). Everything below and to the left of the line is shaded. Which point is a solution to the linear inequality y < Negative one-halfx + 2? (2, 3) (2, 1) (3, –2) (–1, 3)

Respuesta :

Answer:

Option C.

Step-by-step explanation:

A dashed straight line has a negative slope and goes through (0, 2) and (4, 0).

The given inequality is

[tex]y<-\dfrac{1}{2}x+2[/tex]

We need find the point which is a solution to the given linear inequality.

Check the given inequality for point (2, 3).

[tex]3<-\dfrac{1}{2}(2)+2[/tex]

[tex]3<1[/tex]    

This statement is false. Option 1 is incorrect.

Check the given inequality for point (2, 1).

[tex]1<-\dfrac{1}{2}(2)+2[/tex]

[tex]1<1[/tex]

This statement is false. Option 2 is incorrect.

Check the given inequality for point (3, -2).

[tex]-2<-\dfrac{1}{2}(3)+2[/tex]

[tex]-2<0.5[/tex]

This statement is false. Option 3 is correct.

Check the given inequality for point (-1,3).

[tex]3<-\dfrac{1}{2}(1)+2[/tex]

[tex]3<1.5[/tex]

This statement is false. Option 4 is incorrect.

Therefore, the correct option is C.

Ver imagen erinna

Answer:

C

Step-by-step explanation:

(2,1)