Respuesta :

Answer:

The maximum value of C is 14

Step-by-step explanation:

we have the following constraints

[tex]x\geq 0[/tex] ----> constraint A

[tex]y\geq 0[/tex] ---> constraint B

[tex]2x+2y\leq 10[/tex] ---> constraint C        

[tex]3x+y\leq 9[/tex] ---> constraint D

Determine the area of the feasible region using a graphing tool

see the attached figure

The vertices of the feasible region are

[tex](0,0),(0,5),(2,3),(3,0)[/tex]

To find out the maximum value of the objective function C, substitute the value of x and the value of y of each vertices in the objective function an then compare the results

we have

[tex]C=4x+2y[/tex]

For (0,0) ----> [tex]C=4(0)+2(0)=0[/tex]

For (0,5) ----> [tex]C=4(0)+2(5)=10[/tex]

For (2,3) ----> [tex]C=4(2)+2(3)=14[/tex]

For (3,0) ----> [tex]C=4(3)+2(0)=12[/tex]

therefore

The maximum value of C is 14

Ver imagen calculista