Answer:
[tex]P_m_i_n= 356.9 KPa[/tex]
Explanation:
Coefficient of performance (COP) of refrigeration cycle is given by:
[tex]COP=\frac{1}{\frac{T_H}{T_L}-1 }[/tex]
We are given:
[tex]T_H=1.2T_L[/tex]
[tex]COP=\frac{1}{1.2-1 }[/tex]
COP= 5
We can also write Coefficient of performance (COP) of refrigeration cycle as:
[tex]COP_R=\frac{Q_L}{W_i_n}[/tex]
Amount of heat absorbed by low temperature reservoir can be found as:
[tex]Q_L=COP_R * W_i_n[/tex]
[tex]Q_L=5 * 22 KJ[/tex]
[tex]Q_L=110 KJ[/tex]
According to first law of thermodynamics amount of heat rejected by hot reservoir is given by:
[tex]Q_H=Q_L + W_i_n[/tex]
[tex]Q_H=110 KJ + 22 KJ[/tex]
[tex]Q_H=132 KJ[/tex]
We are given the mass of 0.96 kg. So,
[tex]q_H=\frac{Q_H}{m}[/tex]
[tex]q_H=\frac{132 KJ}{0.96Kg}[/tex]
[tex]q_H=137.5 KJ/Kg[/tex]
Since it is a saturated liquid-vapour mixture [tex]q_H=h_f_g[/tex].
[tex]q_H=h_f_g=137.5 KJ/Kg[/tex]
From Refrigerant 134-a tables [tex]T_H[/tex] at [tex]h_f_g=137.5 KJ/Kg[/tex] is 61.3 C. (We calculated this by interpolation)
Converting [tex]T_H[/tex] from Celsius to Kelvin:
[tex]61.3^{o} C+273 = 334.3^{o} K[/tex]
[tex]T_H= 334.3^{o} K[/tex]
We are given:
[tex]T_H=1.2T_L[/tex]
[tex]T_L=\frac{T_H}{1.2}[/tex]
[tex]T_L=\frac{334.3}{1.2}[/tex]
[tex]T_L=278.58^{o} K[/tex]
Converting [tex]T_L[/tex] from Kelvin to Celsius:
[tex]278.58^{o} K-273 = 5.58^{o} C [/tex]
[tex]T_L= 5.58^{o} C [/tex]
From Refrigerant 134-a tables [tex]P_m_i_n[/tex] at [tex]T_L=5.58^{o} C[/tex] is 356.9 KPa. (We calculated this by interpolation).
[tex]P_m_i_n= 356.9 KPa[/tex]