contestada

For small amplitudes of oscillation the motion of a pendulum is simple harmonic. Consider a pendulum with a period of 0.550 s Find the ground-level energy. Express your result in joules Find the ground-level energy. Express your result in election volts

Respuesta :

To solve this problem we will use the concepts related to the expression of energy for harmonic oscillator. From our given values we have that the period is equivalent to

[tex]T = 0.55s[/tex]

Therefore the frequency will be the inverse of the period and would be given as

[tex]f= \frac{1}{T}[/tex]

[tex]f = \frac{1}{0.55}[/tex]

[tex]f = 1.82s^{-1}[/tex]

The ground state energy of the pendulum is,

[tex]E = \frac{1}{2} hv[/tex]

[tex]E = \frac{1}{2}(6.626*10^{-34}J\cdot s)(1.82s^{-1})[/tex]

[tex]E = 6.03*10^{-34}J[/tex]

The ground state energy in eV,

[tex]E = 6.03 * 10^{-34}J(\frac{1eV}{1.6*10^{-19}J})[/tex]

[tex]E = 3.8*10^{-15}eV[/tex]

The energy difference between adjacent energy levels,

[tex]\Delta E = hv[/tex]

[tex]\Delta E = (6.626*10^{-34}J\cdot s)(1.82s)[/tex]

[tex]\Delta E = 12.1*10^{-34}J[/tex]