Respuesta :

Answer:

104,576 cycles

Explanation:

Step 1: identify given parameters

Ultimate strength of steel ([tex]S_{ut}[/tex])= 120 Kpsi

stress amplitude ([tex]\alpha_{a}[/tex])= 70 kpsi

life of the specimen (N) = ?

[tex]N = (\frac{\alpha_{a}}{a})^\frac{1}{b}[/tex]

where a and b are coefficient of fatigue cycle

Step 2: calculate the the endurance limit of specimen

[tex]S_{e} = 0.5*S_{ut}[/tex]

[tex]S_{e}[/tex] = 0.5*120 = 60 kpsi

Step 3: calculate coefficient 'a'

[tex]a=\frac {(0.8XS_{ut})^2}{S_{e}}[/tex]

[tex]a=\frac {(0.8X120)^2}{60}[/tex]

[tex]a= 153.6 kpsi

Step 4: calculate the coefficient 'b'

[tex]b =-\frac{1}{3}log(\frac{f*S_{ut} }{S_{e}})[/tex]

[tex]b =-\frac{1}{3}log(\frac{0.8*120}{60})[/tex]

[tex]b =-0.0680

Step 5: calculate the life of the specimen

[tex]N=(\frac{\alpha_{a}}{a})^\frac{1}{b}[/tex]

[tex]N=(\frac{70}{153.6})^\frac{1}{-0.068}[/tex]

[tex]N=104,576 cycles [/tex]

∴ the life (N) of the steel specimen is 104,576 cycles