Gravel is being dumped from a conveyor belt at a rate of 20 ft3/min, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 14 ft high? (Round your answer to two decimal places.)

Respuesta :

Answer:

The height of the pile is increasing [tex]\frac{20}{49\pi}[/tex] a minute when the pile is 14ft high.

Step-by-step explanation:

The volume of a cone is given by the following formula:

[tex]V = \frac{\pi r^{2}h}{3}[/tex]

We have that the diameter and the height are equal, so [tex]r = \frac{h}{2}[/tex]

So

[tex]V = \frac{\pi h^{3}}{12}[/tex]

Let's derivate this equation, using implicit derivatives.

[tex]\frac{dV}{dt} = \frac{\pi h^{2}}{4}\frac{dh}{dt}[/tex]

In this problem, we have to:

Find [tex]\frac{dh}{dt}[/tex], when [tex]\frac{dV}{dt} = 20, h = 14[/tex]. So

[tex]\frac{dV}{dt} = \frac{\pi h^{2}}{4}\frac{dh}{dt}[/tex]

[tex]20 = \frac{196\pi}{4}\frac{dh}{dt}[/tex]

[tex]\frac{dh}{dt} = \frac{20}{49\pi}[/tex]

The height of the pile is increasing [tex]\frac{20}{49\pi}[/tex] a minute when the pile is 14ft high.

This involves relationship between rates using Calculus.

dh/dt = 0.13 ft/min

  • We are given;

Volumetric rate; dv/dt = 20 ft³/min

height of pile; h = 14 ft

We are not given the diameter here but as we are dealing with a right circular cone, we will assume that the diameter is equal to the height.

Thus; diameter; d = 14 ft

radius; r = h/2 = d/2 = 14/2

radius; r= 7 ft

  • Formula for volume of a cone is; V = ¹/₃πr²h We want to find how fast the height is increasing and this is dh/dt. Thus, we will need to express r in the volume formula in terms of h; V = ¹/₃π(h/2)²h V = ¹/₃π(h²/4)h V = ¹/₁₂πh³

  • differentiating both sides with respect to time t gives; dV/dt = 3(¹/₁₂πh²)dh/dt dV/dt = ¹/₄πh²(dh/dt)

Plugging in the relevant values, we have;

20 = ¹/₄π × 14² × (dh/dt)

dh/dt = (20 × 4)/(π × 14²)

dh/dt = 0.13 ft/min

Read more at; https://brainly.com/question/15585520