Respuesta :

Answer:

The Area of the base is 16 cm² .

Step-by-step explanation:

Given as :

The surface area of the cuboid = x = 95 cm²

The lateral surface area of the cuboid = y = 63 cm²

Let The Area of the base = z cm²

Now, Let The length of cuboid = l cm

The breadth of cuboid = b cm

The height of cuboid = h cm

According to question

The surface area of the cuboid = 2 ×(length × breadth + breadth × height + height × length)

Or, x = 2 ×(l × b + b × h + h × l)

Or, 95 =  2 ×(l × b + b × h + h × l)

Or,  (l × b + b × h + h × l) = [tex]\dfrac{95}{2}[/tex]          ....1

Similarly

lateral surface area of the cuboid = 2 ×(breadth × height + length × height)

Or, y = 2 ×(b × h + l × h)

Or, 2 ×(b × h + l × h) = 63

Or, (b × h + l × h) = [tex]\dfrac{63}{2}[/tex]              ......2

Putting value of eq 2 into eq 1

so,  (l × b +  [tex]\dfrac{63}{2}[/tex] ) = [tex]\dfrac{95}{2}[/tex]    

Or, l × b = [tex]\dfrac{95}{2}[/tex] - [tex]\dfrac{63}{2}[/tex]    

Or,  l × b = [tex]\dfrac{95 - 63}{2}[/tex]

i.e l × b = [tex]\dfrac{32}{2}[/tex]

so, l × b = 16

Now, Again

The Area of the base = ( length × breadth ) cm²

So, z =  l × b

i.e z = 16 cm²

So, The Area of the base = z = 16 cm²

Hence,The Area of the base is 16 cm² . Answer