Write the integral that gives the length of the curve y = f (x) = ∫0 to 4.5x sin t dt on the interval ​[0,π​].

Respuesta :

Answer:

Arc length [tex]=\int_0^{\pi} \sqrt{1+[(4.5sin(4.5x))]^2}\ dx[/tex]

Arc length [tex]=9.75053[/tex]

Step-by-step explanation:

The arc length of the curve is given by [tex]\int_a^b \sqrt{1+[f'(x)]^2}\ dx[/tex]

Here, [tex]f(x)=\int_0^{4.5x}sin(t) \ dt[/tex] interval [tex][0, \pi][/tex]

Now, [tex]f'(x)=\frac{\mathrm{d} }{\mathrm{d} x} \int_0^{4.5x}sin(t) \ dt[/tex]

[tex]f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}\left ( [-cos(t)]_0^{4.5x} \right )[/tex]

[tex]f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}\left ( -cos(4.5x)+1 \right )[/tex]

[tex]f'(x)=4.5sin(4.5x)[/tex]

Now, the arc length is [tex]\int_0^{\pi} \sqrt{1+[f'(x)]^2}\ dx[/tex]

[tex]\int_0^{\pi} \sqrt{1+[(4.5sin(4.5x))]^2}\ dx[/tex]

After solving, Arc length [tex]=9.75053[/tex]