Respuesta :

Answer:

-13

Step-by-step explanation:

We are given:

[tex]\frac{x}{a}=4[/tex]

[tex]\frac{a}{y}=6[/tex]

[tex]a^2=9[/tex]

[tex]ab^2=-8[/tex]

Since [tex]ab^2=-8[/tex] then [tex]a[/tex] has to be negative.

Solving [tex]a^2=9[/tex] therefore gives [tex]a=-3[/tex].

(Note: [tex](-3)^2=(-3)(-3)=9[/tex].)

[tex]\frac{x}{a}=4[/tex] and [tex]a=-3[/tex] gives us:

[tex]\frac{x}{-3}=4[/tex].

Multiplying both sides by -3 gives: [tex]x=-12[/tex].

[tex]\frac{a}{y}=6[/tex] and [tex]a=-3[/tex] gives us:

[tex]\frac{-3}{y}=6[/tex].

Multiplying both sides by [tex]y[/tex] gives: [tex]-3=6y[/tex].

Divide both sides by 6 gives: [tex]\frac{-3}{6}=y[/tex].

Simplifying this gives us [tex]\frac{-1}{2}=y[/tex].

Now we are asked to find the numerical value for [tex]x+2y[/tex].

[tex]-12+2(\frac{-1}{2})[/tex]

[tex]-12+-1[/tex]

[tex]-13[/tex]

D.