If you pute $2000 into an interest bearing account, where interest is compound quarterly (4 times a year) at 6%, how long will it take for your money to triple

Respuesta :

Answer:

So it will take roughly 18.4471905815477 years.

(round appropriately if needed)

Step-by-step explanation:

A=P(1+r/n)^(nt)

6000=2000(1+0.06/4)^(4*t)

6000/2000 = (1+0.06/4)^(4*t)

3 = (1+0.06/4)^(4*t)

3 = (1.015)^(4*t)

log(3) = log((1.015)^(4*t))

 

log(3) = 4*t*log(1.015)

log(3)/(4*log(1.015)) = t

t = log(3)/(4*log(1.015))

t = 18.4471905815477