Respuesta :
Answer:
a) 24.43 radians per second
b) 268.73 inches per second
Explanation:
a) The angular speed of the fan on Celsius degrees/second is 1400, so we should convert that value to radians using the fact that 2π rad = 360 °C:
[tex]\omega = 1400\frac{C}{s}=1400\frac{C}{s}*\frac{2\pi\,rad}{360\,C} [/tex]
[tex]\omega = 1400\frac{C}{s}=24.43\frac{rad}{s} [/tex]
b) Linear speed on a point of the blade is related with angular speed of the fan by the equation
[tex] v=\omega r[/tex]
with v linear speed, ω angular speed and r the radius of the blades. So:
[tex]v=(24.43\frac{rad}{s})(11 in) [/tex]
Radians isn't really a unity; it is dimensionless so we can put it or not. So:
[tex]v=268.73\frac{in}{s} [/tex]
The angular speed of the fan in radians/sec is [tex]24.434\, radians/s[/tex].
The linear speed of the fan in inches/sec is [tex]268.774 \,inches/s[/tex]
Given that the fan rotates at a rate of [tex]1440^{\circ} \,/s[/tex].
- We know that, [tex]360^\circ = 2\pi \,radians[/tex]
- Therefore, [tex]1440^\circ = \frac{2\pi}{360^\circ} \times1440^\circ \,radians = 25.1327 \, radians[/tex]
- ie; angular distance is, [tex]\theta = 24.434\,radians[/tex]
- Therefore, angular speed [tex]\omega = \theta /s = 24.434\, radians/s[/tex]
Now to find the linear speed, we can use the formula;
- [tex]v=r\omega[/tex]
Given the length of the blade, ie; the radius of the fan [tex]r = 11\, inches[/tex].
- Therefore, [tex]v=11\, inches \times 24.434 radians/sec = 268.774\, inches/s[/tex]
Learn more about angular speed here:
https://brainly.com/question/10229393