Answer:
(a) 0 s
(b) 4.00 m
(c) -0.76 s
(d) +0.76 s
Step-by-step explanation:
[tex]x=4.00-7.00t^2[/tex]
It stops momentarily when the velocity, [tex]v[/tex] is 0. [tex]v[/tex] is the derivate of [tex]x[/tex].
(a) [tex]v=\frac{dx}{dt}=-14.00t[/tex]
Setting this to 0,
[tex]-14.00t=0[/tex]
[tex]t=0[/tex]
(b) Substitute this value for [tex]t[/tex] in [tex]x[/tex] to get its position.
[tex]x=4.00-7.00\times0^2=4.00[/tex] m
It passes the origin when [tex]x=0[/tex]
[tex]4.00-7.00t^2=0[/tex]
[tex]7.00t^2=4[/tex]
[tex]t^2=\frac{4}{7}[/tex]
[tex]t=\pm\sqrt{\frac{4}{7}}[/tex]
(c) The negative time is [tex]t=-\sqrt{\frac{4}{7}} =-0.76 s[/tex]
(d) The positive time is [tex]t=+\sqrt{\frac{4}{7}} =+0.76 s[/tex]