In the right triangle shown, \angle A = 30^\circ∠A=30∘angle, A, equals, 30, degrees and AB = 8AB=8A, B, equals, 8.

How long is BCBCB, C?
Answer exactly, using a radical if needed.​

Respuesta :

Answer:

BC=4 units

Step-by-step explanation:

The picture of the question in the attached figure

we know that

In the right triangle ABC

[tex]sin(A)=\frac{BC}{AB}[/tex] ----> by SOH (opposite side divided by the hypotenuse)

we have

[tex]AB=8\ units\\A=30^o[/tex]

substitute the given values

[tex]sin(30^o)=\frac{BC}{8}[/tex]

solve for BC

[tex]BC=sin(30^o)(8)[/tex]

Remember that

[tex]sin(30^o)=\frac{1}{2}[/tex]

so

[tex]BC=(\frac{1}{2})(8)=4\ units[/tex]

Ver imagen calculista