Respuesta :

Answer:

The sum of the roots is 0.5

Step-by-step explanation:

The correct question is

What is the sum of the roots of 20x^2-10x-30

we know that

In a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

The sum of the roots is equal to

[tex]-\frac{b} {a}[/tex]

in this problem we have

[tex]20x^{2} -10x-30=0[/tex]  

so

[tex]a=20\\b=-10\\c=-30[/tex]

substitute

[tex]-\frac{(-10)} {20}=0.5[/tex]

Verify

Find the roots of the quadratic equation

The formula to solve a quadratic equation is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

[tex]a=20\\b=-10\\c=-30[/tex]

substitute

[tex]x=\frac{-(-10)\pm\sqrt{-10^{2}-4(20)(-30)}} {2(20)}[/tex]

[tex]x=\frac{10\pm\sqrt{2,500}} {40}[/tex]

[tex]x=\frac{10\pm50} {40}[/tex]

[tex]x=\frac{10+50} {40}=1.5[/tex]

[tex]x=\frac{10-50} {40}=-1[/tex]

The roots are x=-1 and x=1.5

The sum of the roots are

[tex]-1+1.5=0.5[/tex] ----> is ok