Respuesta :

Answer: [tex]x^2+2x+4[/tex]

Step-by-step explanation:

The expression given in the exercise is:

 [tex]\frac{x^3-8}{x-2}[/tex]

If you descompose the number 8 into its prime factors, you get that:

[tex]8=2*2*2=2^3[/tex]

Therefore, you can rewrite the numerator of the expression as following:

[tex]=\frac{(x^3-2^3)}{(x-2)}[/tex]

For this exercise you need to remember that for a  Difference of cubes:

[tex]a^3-b^3=(a-b)(a^2+ab+b^2)[/tex]

Then, applying this, you get:

[tex]=\frac{(x-2)(x^2+2x+2^2)}{(x-2)}=\frac{(x-2)(x^2+2x+4)}{(x-2)}[/tex]

Now, it is necessary to remember the following:

[tex]\frac{a}{a}=1[/tex]

Knowing the above, you can say that:

[tex]\frac{(x-2)}{(x-2)}=1[/tex]

Therefore applying this, you get that the simplified expression is:

[tex]=x^2+2x+4[/tex]