Answer:
[tex] a = \frac{22.35 m/s}{2.22 s}=10.07 \frac{m}{s^2} \approx 10.1 \frac{m}{s^2}[/tex]
Explanation:
Data given
We assume that the motion is along the x axis and the acceleration is constant.
For this case we have the velocity given by:
[tex] v = 50 \frac{mi}{hr}[/tex]
And we can convert this into [tex]\frac{m}{s}[/tex] we know that
[tex] 1 mi = 1609.34 m[/tex]
[tex] 1 hr = 60 min = 3600 s[/tex]
[tex] v = 50 \frac{mi}{hr}* \frac{1609.34 m}{1mi} * \frac{1hr}{3600 s}=22.35 \frac{m}{s}[/tex]
The time for this case is given [tex] t = 2.22 s[/tex]
Solution to the problem
From kinematics we have the following formula:
[tex] v_f = v_i + a t[/tex]
We can assume that the initial velocity is 0 (starting from rest) [tex] v_f = 22.35 m/s [/tex] and we can solve for the acceleration like this:
[tex] 22. 35 \frac{m}{s}= 0 \frac{m}{s} + a(2.22s)[/tex]
[tex] a = \frac{22.35 m/s}{2.22 s}=10.07 \frac{m}{s^2} \approx 10.1 \frac{m}{s^2}[/tex]