Respuesta :
Answer:
119°C
Explanation:
This question can be solved by using the Clausius-Clayperon Equation.
The formula is given as:
[tex]In(\frac{P_2}{P_1})[/tex] = [tex](\frac{delta H_{vap}}{R} )[/tex][tex](\frac{1}{T_1}-\frac{1}{T_2})[/tex]
We can all figured it out that the Heat of vaporization (Δ[tex]H_{vap}[/tex])= 40.65 kJ/mol or 40,650 J/mol
Now, P₂ (the highest pressure setting) = 14.7 psi + 13.5 psi
=28.2 psi
Also the standard atmospheric pressure (P₁) of [tex]H_2O[/tex] is 14.7 psi (1 atm) and 373K [tex](T_1)[/tex]
∴ substituting our data into the above equation, we have
[tex]In(\frac{28.2 psi}{14,7psi})[/tex] = [tex](\frac{40650J/mol}{8.314J/mol*k} )(\frac{1}{373}-\frac{1}{T_2} )[/tex]
To work out the (In) part in the Left-hand side; we input that directly on the scientific calculator and we have;
0.65 = (4890) [tex](\frac{1}{373} -\frac{1}{T_2})[/tex]
0.65 = [tex](\frac{1}{3}*4890)-(\frac{1}{T_2}*4890)[/tex]
0.65 = 13.1 - [tex]\frac{4890}{T_2}[/tex]
0.65 - 13.1 = - [tex]\frac{4890}{T_2}[/tex]
-12.45 = - [tex]\frac{4890}{T_2}[/tex]
[tex]T_2[/tex] = [tex](\frac{-4890}{-12.45})[/tex]
[tex]T_2[/tex] = 392K
We are tasked with leaving our answer at degree Celsius, therefore 392k to Celsius will be (392-273)°C
= 119°C
The temperature will be "119.5°C".
According to the question,
Pressure,
- [tex]P_1 = 14.7 \ psi[/tex]
- [tex]P_2 = 28.2 \ psi[/tex]
Temperature,
- [tex]T_1 = 373 \ K[/tex]
- [tex]T_2 = ?[/tex]
For water,
- [tex]\Delta_{vap} = 40.7[/tex]
As we know the formula,
→ [tex]log(\frac{P_2}{P_1} ) = \frac{\Delta H_{vap}}{2.303 \ R}(\frac{1}{T_1} -\frac{1}{T_2} )[/tex]
By substituting the values, we get
→ [tex]log(\frac{28.2}{14.7} ) = \frac{40.7}{2.303\times 0.008314}(\frac{1}{373} -\frac{1}{T_2} )[/tex]
[tex]T_2 = 392.5 \ K[/tex]
or,
[tex]= 119.5^{\circ} C[/tex]
Thus the above answer is right.
Learn more about pressure here:
https://brainly.com/question/13676036