Answer:
324795 C
252.637820565 N/C
[tex]2.235844712\times 10^{-9}\ C/m^2[/tex]
Explanation:
[tex]\epsilon_0[/tex] = Permittivity of free space = [tex]8.85\times 10^{-12}\ F/m[/tex]
R = Radius of Mars = [tex]3.4\times 10^6\ m[/tex]
A = Area = [tex]4\pi R^2[/tex]
[tex]\phi[/tex] = Electric flux = [tex]3.67\times 10^{16}\ Nm^2/C[/tex]
Electric flux is given by
[tex]\phi=\dfrac{q}{\epsilon_0}\\\Rightarrow q=\phi\epsilon_0\\\Rightarrow q=3.67\times 10^{16}\times 8.85\times 10^{-12}\\\Rightarrow q=324795\ C[/tex]
The charge is 324795 C
Electric field is given by
[tex]E=\dfrac{\phi}{A}\\\Rightarrow E=\dfrac{3.67\times 10^{16}}{4\pi (3.4\times 10^6)^2}\\\Rightarrow E=252.637820565\ N/C[/tex]
The electric field is 252.637820565 N/C
Surface charge density is given by
[tex]\sigma=\dfrac{q}{4\pi R^2}\\\Rightarrow \sigma=\dfrac{324795}{4\pi (3.4\times 10^6)^2}\\\Rightarrow \sigma=2.235844712\times 10^{-9}\ C/m^2[/tex]
The surface charge density is [tex]2.235844712\times 10^{-9}\ C/m^2[/tex]