Answer:
R_2 = 2333.333 ohms
Δ R_2 = 148 ohms , R_2 = (2185.333 , 2481.333) ohms
Explanation:
Given:
V_2 = V_1 * (R_2 / (R_1 + R_2))
V_1 = 5 +/- 0.01 V
V_2 = 3.5 +/- 0.02 V
R_1 = 1000 +/- 50 ohm
Find:
(1) What is the calculated value of R_2?
(2) What kind of error should we expect in our calculated value of R_2? That is, what is the maximum and minimum amount we could expect to be off by?
Solution:
- Re-arrange the given expression:
(V_2 / V_1) = R_2 / (R_1 + R_2)
R_1 * V_2 + R_2*V_2 = R_2*V_1
R_2 = R_1*V_2 / (V_1 - V_2)
- Now plug in the mean values:
R_2 = 1000*3.5 / (5 - 3.5)
R_2 = 2333.333 ohms
- We will use weighted uncertainty method for tolerance of R_2
Δ R_2 / R_2 = Δ R_1 / R_1 + 2* (Δ V_2 / V_2) + Δ V_1 / V_1
Δ R_2 / 2333.333 = 50/1000 + 2*(0.02/3.5) + 0.01/5
Δ R_2 / 2333.333 = 111 / 1750
Δ R_2 = 148 ohms
- The value of R_2 will be off by 148 ohms, the minimum and maximum values are:
R_2 = (2185.333 , 2481.333) ohms